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On the Automodel Two-Dimensional and Axis ric Steady Motlion of a Gas,

by K. P. Stanyukovich
Translated by Morris D, Friedman,

Ames Aeronautical Laboratory,
Moffett Field, Calif.

The squations of steady axisymmetrical flow may be written

?B-}-Xé‘i—v_a..}-}.ég:()
dr rd r por
§.v.+z_al E_'_LB_P_ = Q
or rQe Ir rpoe (1)
r 9 (pu) # ou + = (ov) + p(u+v cot 8) =0
or d0
3,y 2.
Tt 06 © J

Here r 18 a radius vector; 6 is the angle between any axis

(coinciding with the undisturbed motion of the gas) and the radius vector;

u 1s the projJection of the velocity on r; v 18 the projection of the
velocity on a perpendicular to r; p 1is the density; p is pressure;

8 = pprk is a quantity characterizing the entropy of the gas. The term
u+v cot 6 characterizes the axisymmetricalness of the stream in the case

of two-dimensional flow this term vanishes.

Let us introduce the quantity w = %; then (1) bccomes )

0!
t t 2 t —T =0
ruut,, + vug V2 + T+ T —
p'
ruvle + ¥_ ' + uv + Wy + W .0
r VA 0

6 - p!r Ee'
r u'r +u+ v'e VUtV 45— +u+veotd® =0

0,." .
— - = - T 4+ v 2
ru —— + Vv — (k-1) (ru . )
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Let us introduce

qQ, o 2 e 7
w=rtx,v=rix,w=r ly,p=12y (3)
2
where X, X, ¥, 0 are functions of one independent variable
2 =18¢ (&)

As a result, we arrive at a system of equations, describing the

automodel steady motion of a gas: .

2 t ] L M
4+ - 2 —_— L=
@ X, GXF, tLT O -IP (20, + o, + : W+ ay 0)
(1 + o, )x, 2+ agx,xt +x.%x.* + n’ ''=0
1%y Tt Gg ¥ #XHy D 4T T+ T = (5)

]
x1(1l+ay + ap) + agxy' + xa' + -’-}q— (agxy + X2) + X3 + X2 cot 6=0

-yy—'- (agxy + x2) + (2-k) aoxy = (k-1) %" (g2 + x2}

Here, for example, x!

J =dx,/d 1n z.

In case @ =0, z= ge the system (5) has a solution in the

agsumed "automodel" form.
Ir o, # 0, then the desired solutions may occur only for two-—

+ X

dimensional motion of a gas when Xx -

3 cot © vanishes s inasmuch

as in the opposite case 8 clearly enters in the equation the solution
of which, according to the hypothesis, must not depend on 6 .,
Let us investigate first the case a_ = 0.

3

'
Here, if we eliminate 1 , then (5) may be reduced to the form:

k )
2 - =
@, X, 2+ xgx; x{22+ (2a,+a,) y =0
ky?* 2=k X4
-_— =
(Qrodrmsxxl +57 +EToY =0 »
2 ?(6)
o 7N x2 L]
l+a ) ¥ v + 2 Y4 x + x cot B =0
( B N A y 1 2
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Here, for example, x;: = dxl/de.

Hence it is easy to find Busemann's (1] solution, appearing as
generalization of the Prandtl-Meyer [27 solution.

Let us assume that al = “2 = 0., Then all thg pgrameters
u, v, p, p are functions only of the polar angle 6 and equations(6)
ake the form:

The first equation yields

ut=v (7)
The second relation is the Bernouilli equation; it ylelds

2k
k-1

u? + V2 + = A® = const (8)

After transformation, the third equation becomes

e V2 ) '
() [.k:l AZ-(zz—u’z)_l} TEeneens )

It 1s not difficult to be convinced that for these motions
S = const. In the case of plane motion, the term u + u' cot 6

vanishes and we arrive at the Prandtl-Meyer' solution
K1 ;1o on
ust A2y2 10
7 = (12—w2) (10)

In the general case for automodel plane motion (whenwla7?0) we

have, starting from equations (5), the relations (eliminating nf/q):
\

2 * 2 k '
Xy P HX X XX Ky T YT
X
2-K 1
O+ a4+ —— = 0
(21 2 O‘sk-—lotgx--x)y
1 (11)
ky 2=k Xy
(14 )x x_ + @ x x' + x X '+ + a Y ==0
112 3 1=z 22 k-1 k-1 2ax +X
31 2
a 1 or,x+x2_,
2 # .__._._—31 IZ =
xl(l +a 4+ =)t ax x4 e
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It is evident that the problem must first be reduced to two
crdinary differential equations of first degree and then further to one

equation of First degree (since the equations are homogeneous ).

These equations are )
ka,y ¢
dlng ) AgX, + Xob —p=p—
2~k a,o .k
d a %"~ X %+ y (oo, +a + = )
1 171 1 2 K—1 X, + X, ?12
v O Xy + Xy
v Yt ) 31 -
- (@gx + i)‘ T kL et TSI i
' 2k a Xy a
(l+a )x x_ + 2 1 x1 (lva + —=
1 S k-lax +Xx -
1 2
where
X Lp d/‘z, y. = —-—dy
2 d 1 dx1
Let us introduce X, = gxl, ¥ = 'qxl2; then equations (12) become
] .
-———-ld-“nx = }—41 = b_dz (13)
d_g Nl N2
) 2=k b 3 1 a 4+ dn7
where M ={al—§2 + 1 (P + a4+ %23 % ) 1+ == E,LI
1 | 1 2 k-lax +x (k+1)n dE

1 —1
k+1 [ 2 2-k a 1—]
I{-_—(a3+§) Lal-—ﬁ +n(20-l+a2+k E:xlﬂc_l
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M, =i((l+cx,1)§ + %‘.159211_] (1+%B*8 dny _
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L
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Solving (13), we find 71 =7 (¢), ) xl(g); moreover, we
determine x, = xz(xl) and y = y(xl) and then z = z(x;),

du '
In the case of nouvortical flow, 6-5 =T g_;“v + v which yields

for automodel motion

i .
L =¢q —2-4+x (14a) (1)
1nz 1

For axisymmetric motions @b:e) solving jointly equations (14) and

(€) we find that the irrotational flow is only poasible for @, =a, = 0;

"autompdel"

in the same way, the Busemann solution is the unique
irrotational solution.

The seme result occurs for plane motion (in the case of irrotational
flow). Comparing the first and second of the equations (11), the
coefficients of y and y' , we find that Eal + aé = 0.

Here must be:
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